Pas encore inscrit ? Creez un Overblog!

Créer mon blog

Tout sur la spirale d'Archimède

Archimède à qui l’on doit la spirale qui porte son nom est un savant grec qui a réalisé plusieurs travaux en mathématiques et en physique peu de siècles av. J.-C. La découverte de cette spirale avait pour objectif de résoudre certains problèmes de géométrie. L’objectif n’avait été atteint que partiellement au départ. De même qu’une spirale logarithmique, la spirale d’Archimède présente des particularités qui ont intéressé d’autres mathématiciens des siècles plus tard.

Présentation

Archimède
Archimède de Syracuse (287-212 av. J.-C.) est un savant grec né en 287 av. J.-C. et mort à l’âge de 75 ans. Il est célèbre pour ses travaux en physiques et en géométrie. On accorde souvent la découverte de la fameuse spirale à son disciple Conon de Samos. Définition On parle de la spirale d’Archimède pour designer une trajectoire curviligne décrite par un point P en mouvement uniforme sur une ligne droite "d". Cette dernière décrit en même temps un mouvement rotatoire autour d’un point. En d’autres termes, il s’agit de l’ensemble de points d’une ligne courbe réalisée par le déplacement d’un point sur une droite en rotation autour d’un point. La piste d’un disque vinyle est un exemple illustratif de la spirale d’Archimède. Construction de spirales d’Archimède Le dessin de la spirale d’Archimède peut se réaliser en plaçant une feuille sur un support soumis à un mouvement rotatoire uniforme autour d’un axe passant par le centre c, le stylo s’écartant de c suivant une droite dans un mouvement uniforme. On peut également obtenir la spirale d’Archimède en projetant orthogonalement la spirale conique de Pappus sur un plan perpendiculaire à l’axe du cône.

Objectif

Au départ, la spirale d’Archimède avait pour objectif de résoudre le problème de la construction d’un segment de longueur identique à la circonférence d’un cercle, ou brièvement, la quadrature du cercle. En fin de compte son introduction n’a pas pu répondre à toutes les questions avant les découvertes de Gottfried Wilhelm Leibniz et d’Isaac Newton vers la fin du XVIIe ou début du XVIIIe siècle.

Théorème de Chasles

D’après ce théorème, la spirale d’Archimède est la roulette obtenue en faisant rouler une droite sur un cercle de centre "o" et de rayon "r" et en prenant un point traceur "p" situé à une distance à la droite égale au rayon "r" du cercle. La projection du point "p" sur la droite traçant est une développante de cercle, ce qui implique que la spirale d’Archimède est également la podaire de la développante de cercle.

Articles de la même catégorie Mathématiques

Cour de maths : où trouver des petites annonces de cours de maths près de chez soi ?

Cour de maths : où trouver des petites annonces de cours de maths près de chez soi ?

Les mathématiques et le français sont les épreuves reines, considérées par beaucoup comme étant les deux matières les plus importantes, aussi bien en primaire qu'au collège ou au lycée. il n'est pas rare que les parents cherchent à donner des cours de soutiens à leur enfant. si vous êtes également à la recherche d'un prof pour votre enfant, lisez ces quelques lignes.
Éléments finis : explication de cette méthode d'analyse numérique

Éléments finis : explication de cette méthode d'analyse numérique

En analyse quantitative, la notion des éléments finis est une approche usuelle en mécanique, thermodynamique et acoustique pour résoudre des équations représentant des dérivées partielles. effectivement, la méthode des éléments finis permet de calculer quantitativement le comportement d'un système composé de plusieurs éléments avec des interactions complexes, à condition que les éléments soient omniprésents et leurs interactions soient décrites par une équation aux dérivées partielles linéaires.
Comment calculer une moyenne simple ou avec différents coefficients ?

Comment calculer une moyenne simple ou avec différents coefficients ?

En mathématiques, la moyenne arithmétique et statistique (également appelée moyenne) d'un ensemble de nombres est égale à la somme de toutes les valeurs divisée par le nombre d'opérandes. mais elle montre ses limites quand elle touche aux valeurs extrêmes : les valeurs élevées ont tendance à l'augmenter alors que les valeurs faibles ont tendance à la réduire. cela signifie que la moyenne statistique ne peut pas être représentative dans certains domaines.
Comment mesurer un angle droit ? (conseils)

Comment mesurer un angle droit ? (conseils)

Un angle droit est un angle d'une mesure de 90°. pour prouver qu'un polygone, tel un carré, un rectangle ou un triangle, a un angle droit, ceci exige une parfaite connaissance des propriétés des formes, des lignes, des côtés, de la congruence des outils de mesure et des symboles.